3.6 Factoring Polynomials

A The Remainder Theorem	Ex 1. Determine the remainder when $P(x)=2 x^{3}-4 x^{2}+3 x-6$ is divided by If a polynomial $P(x)$ is divided by $x-b$ then the remainder is $r=P(b)$. Proof:
a) $x-2$	
	b) $x+1$

Ex 2. When $P(x)=x^{3}-k x^{2}+17 x+6$ is divided by $x-3$,
the remainder is 12 . Find the value of k. divided by $x+1$, the remainder is -18 . What are the values of c and d ?

B The Remainder Theorem (II)

If a polynomial $P(x)$ is divided by $a x-b$ then the remainder is $r=P(b / a)$.

Proof:

Ex 4. Determine the remainder when
$P(x)=2 x^{3}+3 x^{2}-7 x-3$ is divided by $2 x+5$.

C The Factor Theorem

A polynomial $P(x)$ has $x-b$ as a factor if and only if $P(b)=0$.

Note. In this case b is a zero of the polynomial function $P(x)$.

Ex 5. Determine whether
a) $x+2$ is a factor of $P(x)=x^{3}+5 x^{2}+2 x-8$
b) $x^{2}-1$ is a factor of $P(x)=2 x^{4}-3 x^{3}-x^{2}+3 x-1$

Ex 6. Factor completely.
a) $P(x)=x^{4}-x^{3}-7 x^{2}+x+6$
b) $P(x)=2 x^{3}+3 x^{2}-3 x-2$

Ex 7. Factor completely.
$P(x)=12 x^{4}-4 x^{3}-11 x^{2}+x+2$

Reading: Nelson Textbook, Pages 171-176
Homework: Nelson Textbook, Page 176: \#1, 2, 5, 6ab, 7af, 9, 10, 12, 13, 16

